

1

What are Servlets?
Java Servlets are programs that run on a Web or Application server and act as a

middle layer between a requests coming from a Web browser or other HTTP client

and databases or applications on the HTTP server.

Using Servlets, you can collect input from users through web page forms, present

records from a database or another source, and create web pages dynamically.

Servlets Packages
Java Servlets are Java classes run by a web server that has an interpreter that

supports the Java Servlet specification.

Servlets can be created using

the javax.servlet and javax.servlet.httppackages, which are a standard part

of the Java's enterprise edition, an expanded version of the Java class library that

supports large-scale development projects.

These classes implement the Java Servlet and JSP specifications. At the time of

writing this tutorial, the versions are Java Servlet 2.5 and JSP 2.1.

Java servlets have been created and compiled just like any other Java class. After

you install the servlet packages and add them to your computer's Classpath, you

can compile servlets with the JDK's Java compiler or any other current compiler.

1. Servlets - Life Cycle
A servlet life cycle can be defined as the entire process from its creation till the

destruction. The following are the paths followed by a servlet.

 The servlet is initialized by calling the init() method.

 The servlet calls service() method to process a client's request.

 The servlet is terminated by calling the destroy() method.

 Finally, servlet is garbage collected by the garbage collector of the JVM.

Now let us discuss the life cycle methods in detail.

The init() Method
The init method is called only once. It is called only when the servlet is created,

and not called for any user requests afterwards. So, it is used for one-time

initializations, just as with the init method of applets.

The servlet is normally created when a user first invokes a URL corresponding to

the servlet, but you can also specify that the servlet be loaded when the server

is first started.

When a user invokes a servlet, a single instance of each servlet gets created, with

each user request resulting in a new thread that is handed off to doGet or doPost

as appropriate. The init() method simply creates or loads some data that will be

used throughout the life of the servlet.

2

The init method definition looks like this −

public void init() throws ServletException {

 // Initialization code...

}

The service() Method
The service() method is the main method to perform the actual task. The servlet

container (i.e. web server) calls the service() method to handle requests coming

from the client(browsers) and to write the formatted response back to the client.

Each time the server receives a request for a servlet, the server spawns a new

thread and calls service. The service() method checks the HTTP request type

(GET, POST, PUT, DELETE, etc.) and calls doGet, doPost, doPut, doDelete, etc.

methods as appropriate.

Here is the signature of this method −

public void service(ServletRequest request, ServletResponse response)

 throws ServletException, IOException {

}

The service () method is called by the container and service method invokes

doGet, doPost, doPut, doDelete, etc. methods as appropriate. So you have

nothing to do with service() method but you override either doGet() or doPost()

depending on what type of request you receive from the client.

The doGet() and doPost() are most frequently used methods with in each service

request. Here is the signature of these two methods.

The doGet() Method
A GET request results from a normal request for a URL or from an HTML form that

has no METHOD specified and it should be handled by doGet() method.

public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 // Servlet code

}

The doPost() Method
A POST request results from an HTML form that specifically lists POST as the

METHOD and it should be handled by doPost() method.

public void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 // Servlet code

}

The destroy() Method
The destroy() method is called only once at the end of the life cycle of a servlet.

This method gives your servlet a chance to close database connections, halt

3

background threads, write cookie lists or hit counts to disk, and perform other

such cleanup activities.

After the destroy() method is called, the servlet object is marked for garbage

collection. The destroy method definition looks like this −

public void destroy() {

 // Finalization code...

}

2. Servlets - Examples

Servlets are Java classes which service HTTP requests and implement

the javax.servlet.Servlet interface. Web application developers typically write

servlets that extend javax.servlet.http.HttpServlet, an abstract class that

implements the Servlet interface and is specially designed to handle HTTP

requests.

Sample Code
Following is the sample source code structure of a servlet example to show Hello

World −

// Import required java libraries

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

// Extend HttpServlet class

public class HelloWorld extends HttpServlet {

 private String message;

 public void init() throws ServletException {

 // Do required initialization

 message = "Hello World";

 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 // Set response content type

 response.setContentType("text/html");

 // Actual logic goes here.

 PrintWriter out = response.getWriter();

 out.println("<h1>" + message + "</h1>");

 }

 public void destroy() {

 // do nothing.

 }

}

4

Compiling a Servlet
Let us create a file with name HelloWorld.java with the code shown above. Place

this file at C:\ServletDevel (in Windows) or at /usr/ServletDevel (in Unix). This

path location must be added to CLASSPATH before proceeding further.

Assuming your environment is setup properly, go in ServletDevel directory and

compile HelloWorld.java as follows −

$ javac HelloWorld.java

If the servlet depends on any other libraries, you have to include those JAR files

on your CLASSPATH as well. I have included only servlet-api.jar JAR file because

I'm not using any other library in Hello World program.

This command line uses the built-in javac compiler that comes with the Sun

Microsystems Java Software Development Kit (JDK). For this command to work

properly, you have to include the location of the Java SDK that you are using in

the PATH environment variable.

If everything goes fine, above compilation would produce HelloWorld.classfile

in the same directory. Next section would explain how a compiled servlet would

be deployed in production.

Servlet Deployment
By default, a servlet application is located at the path <Tomcat-

installationdirectory>/webapps/ROOT and the class file would reside in <Tomcat-

installationdirectory>/webapps/ROOT/WEB-INF/classes.

If you have a fully qualified class name of com.myorg.MyServlet, then this

servlet class must be located in WEB-INF/classes/com/myorg/MyServlet.class.

For now, let us copy HelloWorld.class into <Tomcat-

installationdirectory>/webapps/ROOT/WEB-INF/classes and create following

entries in web.xml file located in <Tomcat-installation-

directory>/webapps/ROOT/WEB-INF/

<servlet>

 <servlet-name>HelloWorld</servlet-name>

 <servlet-class>HelloWorld</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>HelloWorld</servlet-name>

 <url-pattern>/HelloWorld</url-pattern>

</servlet-mapping>

Above entries to be created inside <web-app>...</web-app> tags available in

web.xml file. There could be various entries in this table already available, but

never mind.

5

You are almost done, now let us start tomcat server using <Tomcat-

installationdirectory>\bin\startup.bat (on Windows) or <Tomcat-

installationdirectory>/bin/startup.sh (on Linux/Solaris etc.) and finally

type http://localhost:8080/HelloWorld in the browser's address box. If

everything goes fine, you would get the following result

Session Tracking in Servlets
Session simply means a particular interval of time.
Session Tracking is a way to maintain state (data) of an user. It is also known

as session management in servlet.

Http protocol is a stateless so we need to maintain state using session tracking
techniques. Each time user requests to the server, server treats the request as

the new request. So we need to maintain the state of an user to recognize to
particular user.

HTTP is stateless that means each request is considered as the new request. It is

shown in the figure given below:

Why use Session Tracking?
To recognize the user It is used to recognize the particular user.

Session Tracking Techniques

There are four techniques used in Session tracking:

 Cookies

 Hidden Form Field

 URL Rewriting

 HttpSession

6

Servlet Interface
Servlet interface provides commonbehaviorto all the servlets.Servlet

interface defines methods that all servlets must implement.
Servlet interface needs to be implemented for creating any servlet (either

directly or indirectly). It provides 3 life cycle methods that are used to initialize
the servlet, to service the requests, and to destroy the servlet and 2 non-life

cycle methods.

Methods of Servlet interface
There are 5 methods in Servlet interface. The init, service and destroy are the
life cycle methods of servlet. These are invoked by the web container.

Method Description

public void init(ServletConfig

config)

initializes the servlet. It is the life

cycle method of servlet and invoked

by the web container only once.

public void

service(ServletRequest

request,ServletResponse

response)

provides response for the incoming

request. It is invoked at each

request by the web container.

public void destroy() is invoked only once and indicates

that servlet is being destroyed.

public ServletConfig

getServletConfig()

returns the object of ServletConfig.

public String getServletInfo() returns information about servlet

such as writer, copyright, version

etc.

Servlet Example By Implementing Servlet Interface

import java.io.*;

import javax.servlet.*;

public class First implements Servlet{

ServletConfig config=null;

public void init(ServletConfig config){

this.config=config;

System.out.println("servlet is initialized");

}

7

public void service(ServletRequest req,ServletResponse res)

throws IOException,ServletException{

res.setContentType("text/html");

PrintWriter out=res.getWriter();

out.print("<html><body>");

out.print("hello simple servlet");

out.print("</body></html>");

}

public void destroy(){System.out.println("servlet is destroyed");}

public ServletConfig getServletConfig(){return config;}

public String getServletInfo(){return "copyright 2007-1010";}

}

ServletConfig Interface

An object of ServletConfig is created by the web container for each servlet.
This object can be used to get configuration information from web.xml file.

If the configuration information is modified from the web.xml file, we don't need
to change the servlet. So it is easier to manage the web application if any

specific content is modified from time to time.

Methods of ServletConfig interface

1. public String getInitParameter(String name):Returns the parameter

value for the specified parameter name.

2. public Enumeration getInitParameterNames():Returns an

enumeration of all the initialization parameter names.

3. public String getServletName():Returns the name of the servlet.

4. public ServletContext getServletContext():Returns an object of

ServletContext.

How to get the object of ServletConfig

1. getServletConfig() method of Servlet interface returns the object of ServletConfig.

Syntax of getServletConfig() method

public ServletConfig getServletConfig();

8

Example of getServletConfig() method

ServletConfig config=getServletConfig();

//Now we can call the methods of ServletConfig interface

Syntax to provide the initialization parameter for a

servlet

The init-param sub-element of servlet is used to specify the initialization parameter for a servlet.

<web-app>

 <servlet>

 <init-param>

 <param-name>parametername</param-name>

 <param-value>parametervalue</param-value>

 </init-param>

 </servlet>

</web-app>

Example of ServletConfig to get initialization

parameter

In this example, we are getting the one initialization parameter from the web.xml file and printing

this information in the servlet.

DemoServlet.java

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class DemoServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 ServletConfig config=getServletConfig();

 String driver=config.getInitParameter("driver");

 out.print("Driver is: "+driver);

9

 out.close();

 }

}

web.xml

<web-app>

<servlet>

<servlet-name>DemoServlet</servlet-name>

<servlet-class>DemoServlet</servlet-class>

<init-param>

<param-name>driver</param-name>

<param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>

</init-param>

</servlet>

<servlet-mapping>

<servlet-name>DemoServlet</servlet-name>

<url-pattern>/servlet1</url-pattern>

</servlet-mapping>

</web-app>

ServletContext Interface
An object of ServletContext is created by the web container at time of
deploying the project. This object can be used to get configuration

information from web.xml file. There is only one ServletContext object per
web application.

Usage of ServletContext Interface

There can be a lot of usage of ServletContext object. Some of them are as
follows:

1. The object of ServletContext provides an interface between the container
and servlet.

2. The ServletContext object can be used to get configuration information
from the web.xml file.

3. The ServletContext object can be used to set, get or remove attribute
from the web.xml file.

4. The ServletContext object can be used to provide inter-application
communication.

10

Commonly used methods of ServletContext interface

1. public String getInitParameter(String name):Returns the parameter

value for the specified parameter name.

2. public Enumeration getInitParameterNames():Returns the names of

the context's initialization parameters.

3. public void setAttribute(String name,Object object):sets the given

object in the application scope.

4. public Object getAttribute(String name):Returns the attribute for the

specified name.

5. public Enumeration getInitParameterNames():Returns the names of

the context's initialization parameters as an Enumeration of String

objects.

6. public void removeAttribute(String name):Removes the attribute

with the given name from the servlet context.

Example of ServletContext to get the initialization

parameter

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class DemoServlet extends HttpServlet{

public void doGet(HttpServletRequest req,HttpServletResponse res)

throws ServletException,IOException

{

res.setContentType("text/html");

PrintWriter pw=res.getWriter();

//creating ServletContext object

ServletContext context=getServletContext();

//Getting the value of the initialization parameter and printing it

String driverName=context.getInitParameter("dname");

pw.println("driver name is="+driverName);

pw.close();

11

}}

web.xml

<web-app>

<servlet>

<servlet-name>sonoojaiswal</servlet-name>

<servlet-class>DemoServlet</servlet-class>

</servlet>

<context-param>

<param-name>dname</param-name>

<param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>

</context-param>

<servlet-mapping>

<servlet-name>sonoojaiswal</servlet-name>

<url-pattern>/context</url-pattern>

</servlet-mapping>

</web-app>

ServletRequest Interface
An object of ServletRequest is used to provide the client request information

to a servlet such as content type, content length, parameter names and
values, header informations, attributes etc.

Methods of ServletRequest interface

There are many methods defined in the ServletRequest interface. Some of
them are as follows:

Method Description

public String

getParameter(String

name)

is used to obtain the value of a

parameter by name.

public String[]

getParameterValues(String

name)

returns an array of String containing

all values of given parameter name.

It is mainly used to obtain values of

a Multi select list box.

java.util.Enumeration

getParameterNames()

returns an enumeration of all of the

request parameter names.

12

public int

getContentLength()

Returns the size of the request

entity data, or -1 if not known.

public String

getCharacterEncoding()

Returns the character set encoding

for the input of this request.

public String

getContentType()

Returns the Internet Media Type of

the request entity data, or null if not

known.

public ServletInputStream

getInputStream() throws

IOException

Returns an input stream for reading

binary data in the request body.

public abstract String

getServerName()

Returns the host name of the server

that received the request.

public int getServerPort() Returns the port number on which

this request was received.

Example of ServletRequest to display the name of the user
index.html

<form action="welcome" method="get">

Enter your name<input type="text" name="name">

<input type="submit" value="login">

</form>

DemoServ.java

import javax.servlet.http.*;

import javax.servlet.*;

import java.io.*;

public class DemoServ extends HttpServlet{

public void doGet(HttpServletRequest req,HttpServletResponse res)

throws ServletException,IOException

{

res.setContentType("text/html");

PrintWriter pw=res.getWriter();

String name=req.getParameter("name");//will return value

pw.println("Welcome "+name);

pw.close();

}}

13

1. How constructor can be used for a servlet?

a) Initialization

b) Constructor function

c) Initialization and Constructor function
d) Setup() method

Answer: c
Explanation: We cannot declare constructors for interface in Java. This

means we cannot enforce this requirement to any class which
implements Servlet interface.

Also, Servlet requires ServletConfig object for initialization which is
created by container.

2. Can servlet class declare constructor with ServletConfig object as an

argument?

a) True

b) False

Answer: b

Explanation: ServletConfig object is created after the constructor is called

and before init() is called. So, servlet init parameters cannot be accessed in

the constructor.

3. What is the difference between servlets and applets?

i. Servlets execute on Server; Applets execute on browser
ii. Servlets have no GUI; Applet has GUI

iii. Servlets creates static web pages; Applets creates dynamic web pages
iv. Servlets can handle only a single request; Applet can handle multiple

requests
a) i, ii, iii are correct

b) i, ii are correct

c) i, iii are correct
d) i, ii, iii, iv are correct

Answer: b
Explanation: Servlets execute on Server and doesn’t have GUI. Applets

execute on browser and has GUI.
5. Which of the following code is used to get an attribute in a HTTP

Session object in servlets?
a) session.getAttribute(String name)

b) session.alterAttribute(String name)
c) session.updateAttribute(String name)

d) session.setAttribute(String name)

14

Answer: a
Explanation: session has various methods for use.

6. Which of the following code retrieves the body of the request as binary
data?

a) DataInputStream data = new InputStream()
b) DataInputStream data = response.getInputStream()

c) DataInputStream data = request.getInputStream()
d) DataInputStream data = request.fetchInputStream()

Answer: c
Explanation: InputStream is an abstract class. getInputStream()

retrieves the request in binary data.

7. When destroy() method of a filter is called?
a) The destroy() method is called only once at the end of the life cycle

of a filter
b) The destroy() method is called after the filter has executed doFilter

method
c) The destroy() method is called only once at the begining of the life

cycle of a filter
d) The destroyer() method is called after the filter has executed

Answer: a
Explanation: destroy() is an end of life cycle method so it is called at

the end of life cycle.

8. Which of the following is true about servlets?
a) Servlets execute within the address space of web server

b) Servlets are platform-independent because they are written in java

c) Servlets can use the full functionality of the Java class libraries
d) Servlets execute within the address space of web server, platform

independent and uses the functionality of java class libraries.
Answer: d

Explanation: Servlets execute within the address space of a web server.
Since it is written in java it is platform independent. The full

functionality is available through libraries.
9. Which are the session tracking techniques?

i. URL rewriting
ii. Using session object

iii.Using response object
iv. Using hidden fields

v. Using cookies
vi. Using servlet object

a) i, ii, iii, vi

b) i, ii, iv, v
c) i, vi, iii, v

d) i, ii, iii, v
Answer: b

Explanation: URL rewriting, using session object, using cookies, using
hidden fields are session tracking techniques.

10. Which of the following is used for session migration?
a) Persisting the session in database

15

b) URL rewriting
c) Create new database connection

d) Kill session from multiple sessions
Answer: a

Explanation: Session migration is done by persisting session in
database. It can also be done by storing session in memory on multiple

servers.
11. Which of the following is stored at client side?

a) URL rewriting
b) Hidden form fields

c) SSL sessions

d) Cookies
Answer: d

Explanation: Cookies are stored at client side. Hence, it is advantageous
in some cases where clients disable cookies.

12. Which of the following leads to high network traffic?

a) URL rewriting

b) Hidden form fields

c) SSL sessions

d) Cookies
Answer: a
Explanation: WRL rewriting requires large data transfer to and from the

server which leads to network traffic and access may be slow.

13. Which of the following is not true about session?

a) All users connect to the same session

b) All users have same session variable

c) Default timeout value for session variable is 20 minutes

d) New session cannot be created for a new user
Answer: c

Explanation: Default timeout value for session variable is 20 minutes.
This can be changed as per requirement.

14. 6. SessionIDs are stored in cookies.

a) True

b) False
Answer: a
Explanation: SessionIDs are stored in cookies, URLs and hidden form

fields.

15. 7. What is the maximum size of cookie?

a) 4 KB

b) 4 MB

c) 4 bytes

d) 40 KB

Answer: a

Explanation: The 4K is the maximum size for the entire cookie,

16

including name, value, expiry date etc. To support most browsers, it is

suggested to keep the name under 4000 bytes, and the overall cookie

size under 4093 bytes.
16. How can we invalidate a session?

a) session.discontinue()

b) session.invalidate()
c) session.disconnect()

d) session.falsify()
Answer: b

Explanation: We can invalidate session by calling session.invalidate() to
destroy the session.

17. Which method creates unique fields in the HTML which are not shown

to the user?

a) User authentication

b) URL writing

c) HTML Hidden field

d) HTML invisible field

Answer: c

Explanation: HTML Hidden field is the simplest way to pass information

but it is not secure and a session can be hacked easily.

18. Which object of HttpSession can be used to view and

manipulate information about a session?

a. session identifier

b. creation time
c. last accessed time

d. All mentioned above

ANSWER: All mentioned above
19. Which class provides stream to read binary data such as

image etc. from the request object?
a. ServltInputStream

b. ServletOutputStream
c. Both A & B

d. None of the above
ANSWER: ServltInputStream

20. Which of these ways used to communicate from an applet to
servlet?

a. RMI Communication

b. HTTP Communication

c. Socket Communication

d. All mentioned above

ANSWER: All mentioned above

21. Which methods are used to bind the objects on HttpSession

instance and get the objects?

17

a. setAttribute

b. getAttribute

c. Both A & B

d. None of the above

ANSWER: Both A & B

22. What type of servlets use these methods doGet(),

doPost(),doHead, doDelete(), doTrace()?

a. Genereic Servlets

b. HttpServlets

c. All of the above

d. None of the above

ANSWER: HttpServlets

23. Which cookie it is valid for single session only and it is

removed each time when the user closes the browser?

a. Persistent cookie

b. Non-persistent cookie

c. All the above

d. None of the above

ANSWER: Non-persistent cookie

24. Servlets handle multiple simultaneous requests by using

threads.

a. True

b. False

ANSWER: True

25. What is the lifecycle of a servlet?

a. Servlet class is loaded

b. Servlet instance is created

c. init,Service,destroy method is invoked

d. All mentioned above

ANSWER: All mentioned above

18

Assignment Questions
Q 1 - Which of the following is true about servlets?

A - Servlets execute within the address space of a Web server.

B - Servlets are platform-independent because they are written in Java.

C - The full functionality of the Java class libraries is available to a servlet.

D - All of the above.

Q 2 - Which of the following is true about destroy() method of servlet?

A - After the destroy() method is called, the servlet object is marked for garbage
collection.

B - The servlet is terminated by calling the destroy() method.

C - Both of the above.

D - None of the above.

Q 3 - Which of the following code is used to get PrintWriter object in servlet?

A - response.getWriter()

B - request.getWriter()

C - new PrintWriter()

D - None of the above.

Q 4 - Which of the following code retrieves any extra path information associated with the
URL the client sent?

A - Header.getPathInfo()

B - response.getPathInfo()

C - request.getPathInfo()

D - None of the above.

Q 5 - Which of the following code returns the port number on which this request was
received?

A - response.getServerPort()

B - request.getServerPort()

C - Header.getServerPort()

D - None of the above.

Q 6 - Which of the following code can be used to add a header with the given name and
integer value?

A - request.addHeader(name,value)

B - response.addIntHeader(name,value)

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

19

C - Header.addDateHeader(name,value)

D - None of the above.

Q 7 - Which of the following is true about filters?

A - Servlet Filters are Java classes that can be used to intercept requests from a client
before they access a resource at back end.

B - Servlet Filters are Java classes that can be used to manipulate responses from
server before they are sent back to the client.

C - Both of the above.

D - None of the above.

Q 8 - Which element of web.xml is used to specify the error handler in servlets?

A - error-page

B - error-handler

C - exception

D - exception-handler

Q 9 - Which of the following code sends a cookie in servlet?

A - response.addCookie(cookie);

B - response.sendCookie(cookie);

C - response.createCookie(cookie);

D - None of the above

Q 10 - Which of the following code is used to get language name in servlets?

A - response.getDisplayLanguage()

B - Locale.getDisplayLanguage()

C - request.getDisplayLanguage()

D - None of the above.

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);

